EE101 Final Examination, 4-7 p.m. March 20, 2018

Name_____ Student ID_____

2 pages of formulas and tables only are allowed. But, you must show all your work even when you apply formulas to get full credits. Otherwise, you will lose points.

 Problem 1 [10]

 Problem 2 [5]

 Problem 3 [10]

 Problem 4 [10]

 Problem 5 [10]

 Problem 6 [10]

 Problem 7 [10]

 Problem 8 [5]

 Problem 9 [5]

 Problem 10[10]

 Problem 11[5]

 Problem 12[10]

TOTAL [100]

[1] (10 points) Find the current i_0 and voltage v_0 for a current source of 13 A.

[2] (5 points) Find the equivalent resistance between terminal a and terminal b.

[3] (10 points) Calculate **the voltage V** in the circuit below.

[4] (10 points) Find the mesh current i_1 .

(for continuation of problem 4 solution)

[5] (10 points) (a). (8 points) Find an expression for V_0 in terms of $V_{1,} V_{2,}$ and $V_{3.}$

(b). (2 points) What is **the value of V**_o when (V1, V2, V3) = (75, 80, 90)?

[6] (10 points) Find the maximum power that can be transferred **to resistor R** in the circuit below and **find its maximum power dissipation**.

(continuation of problem 6 solution)

[7] (10 points) Find the voltage across the collector and emitter terminals (V_{CE}) of the bipolar junction transistor (BJT) below with β =100 and V_{BE} =0.7 V for the circuit below.

[8] (5 points) Find an $expression \ for \ L_{eq}$ in terms of $R_1, \ R_2$ and L.

[9] (5 points) Find \mathbf{C}_{eq} of the following capacitor network.

[10] (5 points) Find the inductor current **i(t)** and $\frac{di(t)}{dt}$ for **t** = 0- and for **t** = 0+.

[11] (5 points) Determine **the transformer ratio n** for maximum power transfer to the 8 Ω load when the Thevenin's equivalent voltage and the equivalent resistance for the amplifier circuit are 10V and 128 Ω . Assume that the transformer is an **ideal transformer** which is lossless, unity coupled and its self-inductances of the primary and secondary ports are infinitely large.

(Hint: $V_2 = n V_1$ and $I_2 = I_1/n$)

[12] (10 points) Find the voltage across 1F capacitor v (t) for t > 0.

(Hint: determine for t > 0 whether the circuit is overdamped, critically damped or underdamped so that you can start solving for v (t) with a particular equation form.)

(Prob. 12 solution continued)